50 research outputs found

    Efficient computation of two-dimensional steady free-surface flows

    Full text link
    We consider a family of steady free-surface flow problems in two dimensions, concentrating on the effect of nonlinearity on the train of gravity waves that appear downstream of a disturbance. By exploiting standard complex variable techniques, these problems are formulated in terms of a coupled system of Bernoulli's equation and an integral equation. When applying a numerical collocation scheme, the Jacobian for the system is dense, as the integral equation forces each of the algebraic equations to depend on each of the unknowns. We present here a strategy for overcoming this challenge, which leads to a numerical scheme that is much more efficient than what is normally employed for these types of problems, allowing for many more grid points over the free surface. In particular, we provide a simple recipe for constructing a sparse approximation to the Jacobian that is used as a preconditioner in a Jacobian-free Newton-Krylov method for solving the nonlinear system. We use this approach to compute numerical results for a variety of prototype problems including flows past pressure distributions, a surface-piercing object and bottom topographies.Comment: 20 pages, 13 figures, under revie

    Spectrograms of ship wakes: identifying linear and nonlinear wave signals

    Get PDF
    A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. We use a simple weakly nonlinear theory to identify higher order effects in a spectrogram and, while the high speed ferry data is very noisy, we propose that certain additional features in the experimental data are caused by nonlinearity. Finally, we provide a possible explanation for a further discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceleration.Comment: 21 pages, 10 figures, submitte

    Numerical investigation of controlling interfacial instabilities in non-standard Hele-Shaw configurations

    Full text link
    Viscous fingering experiments in Hele-Shaw cells lead to striking pattern formations which have been the subject of intense focus among the physics and applied mathematics community for many years. In recent times, much attention has been devoted to devising strategies for controlling such patterns and reducing the growth of the interfacial fingers. We continue this research by reporting on numerical simulations, based on the level set method, of a generalised Hele-Shaw model for which the geometry of the Hele-Shaw cell is altered. First, we investigate how imposing constant and time-dependent injection rates in a Hele-Shaw cell that is either standard, tapered or rotating can be used to reduce the development of viscous fingering when an inviscid fluid is injected into a viscous fluid over a finite time period. We perform a series of numerical experiments comparing the effectiveness of each strategy to determine how these non-standard Hele-Shaw configurations influence the morphological features of the inviscid-viscous fluid interface. Tapering plates in either converging or diverging directions leads to reduced metrics of viscous fingering at the final time when compared to the standard parallel configuration, especially with carefully chosen injection rates; for the rotating plate case, the effect is even more dramatic, with sufficiently large rotation rates completely stabilising the interface. Next, we illustrate how the number of non-splitting fingers can be controlled by injecting the inviscid fluid at a time-dependent rate while increasing the gap between the plates. Simulations compare well with previous experimental results for various injection rates and geometric configurations. Further, we demonstrate how the fully nonlinear dynamics of the problem affect the number of fingers that emerge and how well this number agrees with predictions from linear stability analysis

    Saffman-Taylor fingers with kinetic undercooling

    Get PDF
    The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this 'selection' of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.Comment: 10 pages, 6 figures, accepted for publication by Physical Review

    Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments

    Full text link
    A spectrogram of a ship wake is a heat map that visualises the time-dependent frequency spectrum of surface height measurements taken at a single point as the ship travels by. Spectrograms are easy to compute and, if properly interpreted, have the potential to provide crucial information about various properties of the ship in question. Here we use geometrical arguments and analysis of an idealised mathematical model to identify features of spectrograms, concentrating on the effects of a finite-depth channel. Our results depend heavily on whether the flow regime is subcritical or supercritical. To support our theoretical predictions, we compare with data taken from experiments we conducted in a model test basin using a variety of realistic ship hulls. Finally, we note that vessels with a high aspect ratio appear to produce spectrogram data that contains periodic patterns. We can reproduce this behaviour in our mathematical model by using a so-called two-point wavemaker. These results highlight the role of wave interference effects in spectrograms of ship wakes.Comment: 14 pages, 7 figure

    What is the apparent angle of a Kelvin ship wave pattern?

    Get PDF
    While the half-angle which encloses a Kelvin ship wave pattern is commonly accepted to be 19.47 degrees, recent observations and calculations for sufficiently fast-moving ships suggest that the apparent wake angle decreases with ship speed. One explanation for this decrease in angle relies on the assumption that a ship cannot generate wavelengths much greater than its hull length. An alternative interpretation is that the wave pattern that is observed in practice is defined by the location of the highest peaks; for wakes created by sufficiently fast-moving objects, these highest peaks no longer lie on the outermost divergent waves, resulting in a smaller apparent angle. In this paper, we focus on the problems of free surface flow past a single submerged point source and past a submerged source doublet. In the linear version of these problems, we measure the apparent wake angle formed by the highest peaks, and observe the following three regimes: a small Froude number pattern, in which the divergent waves are not visible; standard wave patterns for which the maximum peaks occur on the outermost divergent waves; and a third regime in which the highest peaks form a V-shape with an angle much less than the Kelvin angle. For nonlinear flows, we demonstrate that nonlinearity has the effect of increasing the apparent wake angle so that some highly nonlinear solutions have apparent wake angles that are greater than Kelvin's angle. For large Froude numbers, the effect on apparent wake angle can be more dramatic, with the possibility of strong nonlinearity shifting the wave pattern from the third regime to the second. We expect our nonlinear results will translate to other more complicated flow configurations, such as flow due to a steadily moving closed body such as a submarine.Comment: 19 pages, 9 figures, accepted for publication by Journal of Fluid Mechanic

    Kelvin wake pattern at small Froude numbers

    Full text link
    The surface gravity wave pattern that forms behind a steadily moving disturbance is well known to comprise divergent waves and transverse waves, contained within a distinctive V-shaped wake. In this paper, we are concerned with a theoretical study of the limit of a slow-moving disturbance (small Froude numbers), for which the wake is dominated by transverse waves. We consider three configurations: flow past a submerged source singularity, a submerged doublet, and a pressure distribution applied to the surface. We treat the linearised version of these problems and use the method of stationary phase and exponential asymptotics to demonstrate that the apparent wake angle is less than the classical Kelvin angle and to quantify the decrease in apparent wake angle as the Froude number decreases. These results complement a number of recent studies for sufficiently fast-moving disturbances (large Froude numbers) where the apparent wake angle has been also less than the classical Kelvin angle. As well as shedding light on the wake angle, we also study the fully nonlinear problems for our three configurations under various limits to demonstrate the unique and interesting features of Kelvin wake patterns at small Froude numbers

    Implicit reconstructions of thin leaf surfaces from large, noisy point clouds

    Full text link
    Thin surfaces, such as the leaves of a plant, pose a significant challenge for implicit surface reconstruction techniques, which typically assume a closed, orientable surface. We show that by approximately interpolating a point cloud of the surface (augmented with off-surface points) and restricting the evaluation of the interpolant to a tight domain around the point cloud, we need only require an orientable surface for the reconstruction. We use polyharmonic smoothing splines to fit approximate interpolants to noisy data, and a partition of unity method with an octree-like strategy for choosing subdomains. This method enables us to interpolate an N-point dataset in O(N) operations. We present results for point clouds of capsicum and tomato plants, scanned with a handheld device. An important outcome of the work is that sufficiently smooth leaf surfaces are generated that are amenable for droplet spreading simulations

    Mathematical models and time-frequency heat maps for surface gravity waves generated by thin ships

    Full text link
    Recent research suggests that studying the time-frequency response of ship wave signals has potential to shed light on a range of applications, such as inferring the dynamical and geometric properties of a moving vessel based on the surface elevation data detected at a single point in space. We continue this line of research here with a study of mathematical models for thin ships using standard Wigley hulls and Wigley transom-stern hulls as examples. Mathematical models of varying sophistication are considered. These include basic minimal models which use applied pressure distributions as proxies for the ship hull. The more complicated models are Michell's thin ship theory and the Hogner model, both of which explicitly take into account the shape of the hull. We outline a methodology for carefully choosing the form and parameter values in the minimal models such that they reproduce the key features of the more complicated models in the time-frequency domain. For example, we find that a two-pressure model is capable of producing wave elevation signals that have a similar time-frequency profile as that for Michell's thin ship theory applied to the Wigley hull, including the crucially important features caused by interference between waves created at the bow and stern of the ship. One of the key tools in our analysis is the spectrogram, which is a heat-map visualisation in the time-frequency domain. Our work here extends the existing knowledge on the topic of spectrograms of ship waves. The theoretical results in this study are supported by experimental data collected in a towing tank at the Australian Maritime College using model versions of the standard Wigley hulls and Wigley transom-stern hulls
    corecore